Parametric iterative methods of quadratic convergence without the derivative 具有参数的不带有导数的平方收敛的迭代法
Exactly Quadratic Convergence and Efficient Implementation of Gauss-Newton Method Gauss-Newton法恰2阶收敛性及其有效实现
Quadratic Convergence and Convergence Ratio Factor of Newton's Iteration Method Under Weak Conditions 牛顿迭代法在弱条件下的二阶收敛性和比值收敛因子
The Q-quadratic convergence of this algorithm is given. 文中还给出此算法的Q-二次收敛性。
Global convergence, local superlinear convergence, quadratic convergence and finite termination for nondegenerative linear complementarity problems are proved under the assumption that F is a uniform P& function. 在F为一致P-函数情形,证明了算法的全局收敛性、局部超线性收敛性和二次收敛性,对于非退化的线性互补问题仍具有有限步收敛性。
Quadratic convergence of approximate newton's methods for nonlinear complementarity problems 非线性互补问题近似Newton法的二阶收敛性
( iii) The local quadratic convergence rate is proved under the condition that the solution is BD-regular; (ⅲ)在解是BD-正则条件下,证明了算法的局部二次收敛性;
An iterative algorithm for solving non homogenous bilinear quadratic problem is also given, and the convergence of the algorithm is proved. 提出了求解非齐次双线性二次型问题的迭代算法,分析了该算法的收敛性。
Newton-FOM algorithm and Newton-GMRES algorithm for solving nonsmooth equations are presented. It is proved that these Krylov subspace algorithms have locally quadratic convergence. 给出了求解非光滑方程组的NewtonFOM算法和NewtonGMRES算法,证明了这些Krylov子空间方法的局部平方收敛性。
Under BD-regularity, the method has a superlinear/ quadratic convergence rate whether the limit of point x~ is degenerate or not. 无需假设极限点x是否退化,在BD-正则的条件下,算法局部超线性(二次)收敛。
We prove that this smoothing function has two important properties, which will be very useful in the analysis on the global linear and local superlinear ( or quadratic) convergence of non-interior continuation methods for solving variational inequalities and complementarity problems. 证明了:该光滑化函数拥有两个在求解变分不等式和互补问题的非内部连续化算法的全局线性和局部超线性(或二次)收敛性分析中非常有用的两个性质。
Under suitable assumptions, this method possesses locally quadratic convergence. 该方法在适当的假设下具有局部二次收敛性。
Two extension models of SQP and SSLE algorithms for optimization and their superlinear and quadratic convergence 最优化两个拓广的SQP和SSLE算法模型及其超线性和二次收敛性
The local superlinear and quadratic convergence of this two models under some mild conditions without the strict complementary condition are analysed and proved. 详细分析和论证两个模型的局部超线性收敛性及二次收敛性条件,其中并不需要严格互补条件。
In Chapter 3, some nonmonotone PVT algorithm s are constructed and their convergence theorems are demonstrated. A second-order PVT algorithm for solving nonconvex unconstrained optimization problems, based on negative curvature directions and quadratic curve searches, is proposed, and its convergence theorem is proven. 在第三章中,首先给出几种非单调PVT算法及其收敛性定理,然后利用负曲率方向和二次曲线搜索,给出了非凸无约束规划的二阶PVT算法,证明了算法的收敛性定理。
On the Quadratic Convergence of an Algorithm for Function Minimization 一类函数最小化算法的二阶收敛性质
The n-step quadratic convergence of a class of variable metric methods with inaccurate linear searches 一类不精确搜索的变尺度法的n步二次收敛性
The method possesses the Quadratic convergence. In general it has a faster operational speed than that of Powell's method in the operation of optimization. 在最优化运算中,该方法具有二次收敛性,一般说来,在运算速度上也比Powell方法要快一些。
A direct algorithm with N-step quadratic convergence 一个具有n步二次收敛性的直接法算法
A perturbed successive quadratic programming algorithm and its convergence 一种有扰动项的序列二次规划算法及其收敛性
Being directed at unconstrained nonlinear programming problem, it has quadratic conclusive property and entire convergence. 该算法针对无约束非线性规划问题,它具有二次终结性以及整体收敛性。
The algorithm has quadratic convergence and can speed up the EM computation. 该方法基于拟牛顿加速算法,并结合一种带调整参数的Broyden对称秩1校正公式来实现,具有二次收敛性,提高了EM的计算速度,降低了计算复杂度。
Quadratic Convergence of Newton-type Algorithms for Mix-complementarity Problems 混合互补问题牛顿型算法的二阶收敛性
An SQP Quasi-feasible Algorithm with Superlinear and Quadratic Convergence for General Constrained Optimization 一般约束最优化超线性与二次收敛的SQP拟可行方法
In chapter two, the strictly feasible interior point algorithm for convex quadratic programming is presented, and its convergence is analyzed. 第二章给出了求解凸二次规划的严格可行内点算法,并分析了其收敛性。
The authors suggest two kinds of algorithms for solving the problems: segment approaching method and quadratic iterative method, and the convergence for the segment approaching method is proved. 文中给出了两种算法:折线逼近法和二次序列法,并对算法的收敛性进行了分析,证明了折线逼近法的收敛性。
And then, we verify that this new algorithm is well defined and it has global linear convergence and local quadratic convergence with proper assumptions. 而后证明了该算法是适定的,并且在合适的假设下保持了非内点连续化算法良好的收敛性质,即具有全局线性收敛性和局部二次收敛性。
Under R-regularity, the method has a quadratic/ superlinearly convergence rate. 在解点R正则的条件下,该算法还具有超线性和局部二次收敛性。
Moreover, we demonstrate the convergence theorems for the discrete schemes of the two differential systems, including the locally quadratic convergence rate of the discrete algorithm for second order derivatives based differential equation system. 我们还证明了两个微分方程系统欧拉离散迭代格式的局部收敛性和基于第二个系统的离散迭代格式的局部二次收敛性质。